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This study characterised the in vitro and in vivo profiles of two novel long-acting muscarinic antagonists,
aclidinium bromide and glycopyrronium bromide, using tiotropium bromide and ipratropium bromide
as comparators. All four antagonists had high affinity for the five muscarinic receptor sub-types (M1

eM5); aclidinium had comparable affinity to tiotropium but higher affinity than glycopyrronium and
ipratropium for all receptors. Glycopyrronium dissociated faster from recombinant M3 receptors than
aclidinium and tiotropium but more slowly than ipratropium; all four compounds dissociated more
rapidly from M2 receptors than from M3 receptors. In vitro, aclidinium, glycopyrronium and tiotropium
had a long duration of action at native M3 receptors (>8 h versus 42 min for ipratropium). In vivo, all
compounds were equi-potent at reversing acetylcholine-induced bronchoconstriction. Aclidinium, gly-
copyrronium and ipratropium had a faster onset of bronchodilator action than tiotropium. Aclidinium
had a longer duration of action than glycopyronnium (time to 50% recovery of effect [t½ offset] ¼ 29 h and
13 h, respectively); these compare with a t½ offset of 64 h and 8 h for tiotropium and ipratropium,
respectively. Aclidinium was less potent than glycopyrronium and tiotropium at inhibiting salivation in
conscious rats (dose required to produce half-maximal effect [ED50] ¼ 38, 0.74 and 0.88 mg/kg, respec-
tively) and was more rapidly hydrolysed in rat, guinea pig and human plasma compared with glyco-
pyrronium or tiotropium. These results indicate that while aclidinium and glycopyrronium are both
potent antagonists at muscarinic receptors with similar kinetic selectivity for M3 receptors versus M2,
aclidinium has a longer dissociation half-life at M3 receptors and a longer duration of bronchodilator
action in vivo than glycopyrronium. The rapid plasma hydrolysis of aclidinium, coupled to its kinetic
selectivity, may confer a reduced propensity for systemic anticholinergic side effects with aclidinium
versus glycopyrronium and tiotropium.

© 2014 Published by Elsevier Ltd.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is characterised
by persistent airflow limitation, and an enhanced chronic inflam-
matory response in airways and lung to noxious particles or gases
[1]. Characteristic symptoms of COPD include airway limitation and
chronic coughing due to mucus hypersecretion [1]. Acetylcholine is
the primary parasympathetic neurotransmitter in the airways [2]
and plays an important role in regulating both airway smooth
muscle tone [3] andmucus secretion [4,5] via stimulation of airway
muscarinic receptors. The primary reversible component of airway
limitation is sensitive to muscarinic receptor antagonists [2,6]. Of
the five muscarinic receptors identified to date (M1eM5), only the
M1eM3 subtypes are found in the airways [7]. The M3 receptor
117
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mediates acetylcholine-induced contraction of airway smooth
muscle [8,9], and stimulation of M1 and M3 receptors on submu-
cosal mucus glands promotesmucus secretions in airways [5,10]. By
contrast, M2 receptors are presynaptic autoreceptors which serve
as a negative feedback mechanism to modulate acetylcholine
release from parasympathetic nerves [7].

As a consequence of the central role of muscarinic receptors in
mediating the underlying pathophysiology of COPD, anticholiner-
gics, specifically muscarinic receptor antagonists, are recom-
mended as a first-line bronchodilator treatment option in patients
with COPD [1,11]. Short-acting muscarinic antagonists (SAMAs),
such as ipratropium bromide, are recommended for use in Group-A
patients who are characterised as having few symptoms and a low
risk of exacerbation [1]. By contrast, long-acting muscarinic an-
tagonists (LAMAs), such as aclidinium bromide, glycopyrronium
bromide and tiotropium bromide, are preferred for maintenance
treatment in patients with more severe airflow limitation, more
symptoms or a higher risk of exacerbation (Groups CeD) [1].
However, ipratropium and tiotropium, which have been available
for many years, are associated with systemic side effects typical of
the anticholinergic class of compounds, such as dry mouth [12,13]
and an increased risk of cardiovascular side effects [14e16].

In 2012, two new LAMAs, aclidinium and glycopyrronium, were
approved in Europe for maintenance bronchodilator treatment in
adult patients with COPD [17,18]; aclidinium has also been
approved in the US [19]. In preclinical studies, both aclidinium [20]
and glycopyrronium [21] had high affinity for all five muscarinic
receptors. Aclidinium was also shown to be rapidly hydrolysed in
human plasma to two inactive metabolites [22], suggesting a
reduced potential for systemic anticholinergic effects with
aclidinium.

Here we compare the in vitro pharmacology of aclidinium and
glycopyrronium at muscarinic receptors with that of tiotropium
and ipratropium. The potency, onset of action and duration of ac-
tion of each antagonist in in vitro and in vivo bronchoconstriction
models were also assessed. Additional studies were conducted to
investigate the potential of all four antagonists to cause systemic
side effects in the rat pilocarpine-induced sialorrhea model. Finally,
the stability of the four antagonists in guinea pig, rat and human
plasma was compared.
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2. Materials and methods

2.1. Chemicals and reagents

Aclidinium, glycopyrronium and tiotropium were synthesised
by the Department of Medicinal Chemistry (Almirall R&D Centre,
Barcelona, Spain). Acetylcholine hydrochloride, atropine sulfate,
carbachol chloride, ipratropium and pilocarpine were obtained
from SigmaeAldrich (Madrid, Spain); ketamine chlorhydrate
(Imalgene) was from Merial (Barcelona, Spain); xylazine (Rompun
2%) from Bayer (Barcelona, Spain); acepromazine maleate (Calm-
oneosan) from Pfizer Salud Animal (Alcobendas, Spain); propofol
(Lipuro) from B. Braun (Rubí, Spain); acetonitrile from Scharlau
(Barcelona, Spain); Milli-Q water from Millipore S.A. (Madrid,
Spain); and formic acid, ammonia and hydrochloric acid from
Merck (Madrid, Spain).

Membrane preparations expressing recombinant human M1,
M2, M3, M4 and M5 receptors (prepared from transfected CHO-K1
cells) were obtained from Membrane Target Systems (Perkin
Elmer Life and Analytical Sciences, Boston, MA, USA). 1-[N-meth-
yl-3H] scopolamine methyl chloride ([3H]-NMS) was obtained from
Perkin Elmer Life and Analytical Sciences; [3H]aclidinium (2.89
TBq/mmol), [3H]glycopyrronium (2.59 TBq/mmol), [3H]tiotropium
Please cite this article in press as: Gavald�a A, et al., The in vitro and in viv
bromide, Pulmonary Pharmacology & Therapeutics (2014), http://dx.doi.
(3.11 TBq/mmol) and [3H]ipratropium (2.70 TBq/mmol) were
custom synthesised by GE Healthcare UK Ltd (Slough, UK).

All equilibrium binding studies were performed in 96-well
plates (NUNC; Thermo Fischer Scientific, Roskilde, Denmark). All
assay reagents were dissolved in assay buffer (TRIS 25 mM pH: 7.4)
[SigmaeAldrich, Tres Cantos, Spain]) and test compounds were
dissolved in dimethyl sulfoxide. Aclidinium was prepared in 0.2%
HCl/20% polyethylene glycol for use in in vitro organ bath experi-
ments and in vivo studies; carbachol, ipratropium, glycopyrronium
and tiotropium were dissolved in distilled water. Krebs-Henseleit
solution was composed of: NaCl 118 nM, KCl 4.7 nM, CaCl2
2.52 nM, MgSO4 1.2 nM, NaHCO3 24.9 nM, KH2PO4 1.18 nM, glucose
5.55 nM and sodium pyruvate 2 nM. In plasma stability studies,
stock solutions (1 mg/mL) of aclidinium, glycopyrronium, tio-
tropium and ipratropium were prepared in 20:80, v/v 0.1 N HCl/
acetonitrile; working solutions were dissolved in Milli-Q water. Rat
plasma was obtained from RCC Cida (Barcelona, Spain).

2.2. Animals

Male Dunkin-Hartley guinea pigs (400e600 g) were obtained
from Harlan (Interfauna Ib�erica, Sant Feliu de Codines, Spain).
Guinea pigs were housed in groups of four or five, at 20e24 �C
under a 12-h light/dark cycle and fed a maintenance diet for guinea
pigs, supplemented with vitamin C (SAFE114, SAFE, France); water
was ad libitum. Guinea pigs were allowed to acclimatise for a
minimum of 5 days prior to experimental procedures. Male Wistar
rats (180e260 g) were also obtained fromHarlan. Rats were housed
at 20e24 �C under a 12-h light/dark cycle. Standard chowandwater
were available ad libitum. All experiments were approved and
monitored by the Animal Ethical Committee of Almirall (Barcelona,
Spain) and in accordance with EU Directive 2010/63/EU for animal
experiments.

2.3. Radioligand binding studies

2.3.1. Affinity for the human M1 to M5 muscarinic receptors
The affinity (equilibrium antagonist dissociation constant [Ki]

values) of muscarinic antagonists at recombinant human musca-
rinic M1eM5 receptors was determined as described previously
[20]. Briefly, human M1, M2, M3, M4 and M5 receptor membrane
preparations (protein concentrations 8.1, 10.0, 4.9, 4.5 and 5.0 mg/
well, respectively) were incubated at room temperature for 2 or 6 h
(M1eM4 and M5, respectively) with [3H]-NMS concentrations
approximately equal to the radioligand equilibrium dissociation
constant (Kd) for each receptor subtype (0.3 nM for M1 and M4; and
1 nM for M2, M3 and M5). Non-specific binding to membranes was
determined in the presence of atropine 1 mM. Antagonist concen-
trations (10�5 to 10�14 M) were tested in duplicate. Incubation
times were selected to ensure equilibrium binding was achieved.
Bound and free [3H]-NMS were separated by rapid vacuum filtra-
tion of GF/C filter plates (Millipore, Barcelona, Spain), and radio-
activity was quantified using a MicroBeta Trilux microplate
scintillation counter (Perkin Elmer Life and Analytical Sciences). Ki
values were calculated as described by Cheng and Prusoff for
competitive inhibitors [23]. All binding studies were performed in
non-physiological assay binding buffer containing 25 mM TRIS pH:
7.4.

2.3.2. Dissociation from M2 and M3 muscarinic receptors
Dissociation of radiolabelled muscarinic antagonists was

assessed as described previously [20]. Association of radioligands,
with approximately 90% binding-site occupancy, was achieved by
incubating membranes expressing human M2 and M3 receptors
(final protein concentration 15 mg/mL) at room temperature with
o profile of aclidinium bromide in comparison with glycopyrronium
org/10.1016/j.pupt.2014.05.005
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[3H]aclidinium (2.5 nM), [3H]glycopyrronium (15 and 5 nM for M2
and M3 receptors, respectively), [3H]tiotropium (2.5 nM) or [3H]
ipratropium (10 nM) for 135 min. Dissociation from the receptor
was initiated by the addition of atropine 10 mM (final concentra-
tion). The amount of bound radioligand remaining over time was
assessed by separating bound and free radioligand as described in
section 2.3.1. Dissociation half-lives (t½) were calculated using one-
phase exponential decay. All binding studies were performed in
non-physiological assay binding buffer containing 25 mM TRIS pH:
7.4.

2.4. In vitro potency and duration of action at native M2 and M3

muscarinic receptors

2.4.1. M2 receptors
Potency and duration of action at M2 receptors were assessed in

the isolated guinea pig left-atria preparation. Briefly, left atria
(n ¼ 3e13) were dissected and suspended in an organ bath con-
taining oxygenated Krebs-Henseleit solution at 32 �C. Isolated tis-
sues were connected to a force transducer (Letica TRI201,
Barcelona, Spain) and isometric changes recorded using PowerLab
software (AD instruments, Panlab, Barcelona, Spain). A stable
resting tone was achieved by applying a pre-load of 1 g prior to
electrical stimulation (1 Hz, 8 V 5 ms); baseline contractions were
assessed during a 60-min stabilization period. Inhibition of elec-
trically induced contractions via the M2 receptor was achieved by
the addition of carbachol 1 mM. Increasing cumulative concentra-
tions of antagonists (0.01e1000 nM)were added every 5e10min to
assess the potency of each compound to reverse carbachol-induced
relaxation of electrically stimulated contractions. The EC50 (con-
centration required to produce 50% inhibition of the maximum
carbachol-induced relaxation) was determined for each compound
using non-linear regression.

Duration of action was assessed as time to 50% recovery of the
maximum carbachol-induced relaxation (t½ offset). Following the
addition of carbachol 10 mM, antagonists were added at a concen-
tration that inhibited 80% of the maximum carbachol-induced
relaxation; inhibition of tone was then allowed to stabilise for
20e30 min. The antagonists were washed out and the atria re-
incubated with carbachol 10 mM for 4 h. The t½ offset was calcu-
lated using one-phase (aclidinium, glycopyrronium and tio-
tropium) or two-phase (ipratropium) exponential decay.

2.4.2. M3 receptors
The potency and duration of action of antagonists at M3 re-

ceptors were assessed in the isolated guinea pig trachea prepara-
tion, as described previously [20,24]. Briefly, trachea were excised
and mounted in a superfusion chamber containing oxygenated
Krebs-Henseleit solution, supplemented with propranolol 1 mM at
37 �C. Trachea strips (n ¼ 3e13) were connected to a force trans-
ducer and isometric changes recorded as in Section 2.4.1. A pre-load
of 1 g was applied to obtain a stable resting tone prior to the in-
duction of M3 receptor-mediated contractions (10 s trains of square
wave pulses of 5 Hz and 0.1 ms every 2 min). Baseline was estab-
lished by stimulating trachea strips for �20 min at a voltage of
10e15% above that required for a maximal response. Increasing
concentrations of antagonists (0.01e1000 nM) were then added
every 30 min to assess the potency of each compound to inhibit
electrically stimulated contractions. A cumulative concen-
trationeresponse curve for inhibition of electrically stimulated
contractions was constructed and the EC50 determined using non-
linear regression.

Duration of action at M3 receptors was assessed as t½ offset
(time to 50% recovery of electrically-stimulated contractions). Tis-
sues were incubated for 45 min in antagonist solution, at a
Please cite this article in press as: Gavald�a A, et al., The in vitro and in viv
bromide, Pulmonary Pharmacology & Therapeutics (2014), http://dx.doi.
concentration that produced sub-maximal (80e90%) inhibition of
electrically stimulated contractions. Antagonists were thenwashed
out and t½ offset calculated using non-linear regression analysis.
2.5. In vivo potency, onset of action and duration of action in
anaesthetised guinea pigs

The in vivo potency, onset and duration of bronchodilation were
assessed in an anaesthetised guinea pig bronchoconstriction
model. Conscious guinea pigs were placed in a methacrylate box
and exposed to a nebulised aerosol of antagonist solution. Antag-
onists were administered for 1 min at a flow rate of 3 L/min and
animals were allowed to breathe freely for a 5-min period. This
procedure was then repeated. Muscarinic antagonists (1e1000 mg/
mL) or vehicle were administered to guinea pigs (n ¼ 4e9 by dose
and time point) as nebulised aerosols via an ultrasonic nebuliser
(DeVilbiss UltraNeb 2000; Sunrise Medical, Somerset, PA). This
nebulisation was driven by a mixture of 5% CO2, 21% O2, 74% N2 at a
flow of 3L/min as previously described [20]. At various time points
(1, 2, 4, 6, 18 and 24 h) after antagonist exposure, guinea pigs were
anaesthetised with an intramuscular injection of ketamine
(43.8 mg/kg), xylazine (3.5 mg/kg) and acrepromazine (1.1 mg/kg);
additional anaesthetic was administered as necessary. Animals
were adequately anesthetised during surgical procedure and dur-
ing all study time points. Airflow, transpulmonary pressure and
blood pressure were monitored throughout the procedure as pre-
viously described [20]. During experiments, guinea pigs were
artificially ventilated as previously described [20]; body tempera-
ture was maintained at 37 �C with a homeothermic blanket. Pul-
monary airway resistance (Raw) was assessed as a measure of
bronchoconstriction. Raw was calculated as the quotient of the
changes in flow and pressure between isovolumetric points on
inspiration and expiration. Measurements were initiated once
baseline Raw values were in the range 0.1e0.2 cM H2O/mL per s.

Bronchoconstrictionwas induced by intravenous administration
of a single bolus dose of acetylcholine (30 mg/kg), and the inhibitory
effect of each antagonist was assessed relative to vehicle. Potency
was defined as the concentration required to produce 50% inhibi-
tion of acetylcholine-induced bronchoconstriction (EC50), deter-
mined from a sigmoidal doseeresponse curve constructed using
the inhibition values at each of the time points studied. Onset of
action for each compound was defined as the time to maximal
inhibition of bronchoconstriction (tmax) taken from EC50 values. The
duration of action, defined as the time to 50% recovery of the
maximal inhibitory effect achieved by the antagonist (t½ offset),
was derived from time-course bronchoconstriction inhibition
curves using one-phase exponential decay.
2.6. Salivation in conscious rats

The effect of aclidinium, glycopyrronium and tiotropium on
salivation in conscious rats was assessed as follows: rats (n¼ 6e24)
were fasted for 18 h (with water ad libitum) prior to administration
of aclidinium (0.1e1000 mg/kg), glycopyrronium (0.1e10 mg/kg),
tiotropium (0.1e100 mg/kg) or vehicle subcutaneously in the
intercapular area. After 30 min, pilocarpine (0.5 mg/kg) was
administered via the caudal vein. The presence of any sialorrhea
(excess saliva) was recorded during the first 15-min post-
pilocarpine administration by gently pressing filter paper on the
animal's snout. Animals were considered positive for sialorrhea if
the filter paper was spotted. The proportions of animals showing
salivation following antagonist treatment were compared with
vehicle-treated animals using Fisher's exact test. The ED50 values
(dose required to inhibit pilocarpine-induced salivation in 50% of
o profile of aclidinium bromide in comparison with glycopyrronium
org/10.1016/j.pupt.2014.05.005



Table 1
Binding affinity of aclidinium, glycopyrronium, tiotropium and ipratropium for
human M1, M2, M3, M4 and M5 receptors.

Ki (nM)

M1 M2 M3 M4 M5

Aclidinium 0.10 ± 0.00 0.14 ± 0.04 0.14 ± 0.02 0.21 ± 0.04 0.16 ± 0.01
Glycopyrronium 0.42 ± 0.02 1.77 ± 0.06 0.52 ± 0.04 0.78 ± 0.04 1.29 ± 0.09
Tiotropium 0.13 ± 0.00 0.13 ± 0.04 0.19 ± 0.04 0.30 ± 0.09 0.18 ± 0.06
Ipratropium 1.31 ± 0.15 1.12 ± 0.13 1.24 ± 0.08 1.92 ± 0.18 3.22 ± 0.15

Data are reported as mean ± standard error of the mean of three independent ex-
periments.
Ki, antagonist dissociation constant.

Table 2
Dissociation half-lives of [3H]aclidinium, [3H]glycopyrronium, [3H]tiotropium and
[3H]ipratropium from human M2 and M3 receptors.

M2

t½ (h)
M3

t½ (h)
Relative half-life
at M3 receptora

t½
M3/M2 ratio

Aclidinium 4.69 ± 0.29 29.24 ± 0.61 62 6.2
Glycopyrronium 1.07 ± 0.20 8.10 ± 0.45 17 7.3
Tiotropium 15.11 ± 1.57 62.19 ± 2.96 132 4.1
Ipratropium 0.08 ± 0.01 0.47 ± 0.02 1 5.9

Data are reported as mean ± standard error of the mean from three independent
experiments.
t½, dissociation half-life.

a Half-lives expressed relative to [3H]ipratropium.
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rats) were calculated by non-linear regression (sigmoidal dos-
eeresponse curve fit).

2.7. In vitro rat, guinea pig and human plasma stability

In vitro plasma stability was assessed as described previously
[22]. Briefly, guinea pig (n ¼ 10) plasma samples were prepared
using sodium heparin as anticoagulant (25 units/mL; 2000 � g at
4 �C). Plasma samples from human volunteers (n ¼ 6) were ob-
tained in a similar manner. Rat plasma was commercially available.

Triplicate plasma samples were pre-incubated at 37 �C for 5 min
prior to the addition of aclidinium, glycopyrronium, tiotropium or
ipratropium at a final concentration of 83 nM, 126 nM, 102 nM and
120 nM, respectively (40 ng/mL, expressed as cation) to initiate the
reaction. Following incubation for predetermined time points up to
1 h, 100 mL aliquots of each reaction were combined with 300 mL
ice-cold acetonitrile:1 N HCl (90/10, v/v). Samples were centrifuged
at 2500 � g for approximately 10 min at 4 �C. Control plasma in-
cubations in the absence of antagonist were also performed. Sam-
ples were analysed by ultra performance liquid chromatography
(Acquity Ultra Performance LC, Waters, Milford, MA, USA) with
mass spectrometry detection (Quattro Premier, Micromass Tech-
nologies, Waters). For each time point, the percentage of remaining
unaltered compound was calculated. The dissociation half-life (t½)
in plasma was calculated using WinNonlin software (version 5.0.1.,
Pharsight Corporation, USA).

3. Results

3.1. Determination of affinity of muscarinic antagonist for the
human M1 to M5 muscarinic receptors

The affinity of aclidinium, glycopyrronium, tiotropium and
ipratropium for the human M1eM5 receptors was assessed in
competitive binding experiments using membranes from trans-
fected CHO-K1 cells, stably expressing each of the recombinant
receptors. Prior to determining ligand affinity, the amount of drug
required to saturate a population of receptors and the Kd value for
each receptor were established in saturation (equilibrium binding)
experiments using [3H]-NMS; these data have been reported pre-
viously [20]. All of the antagonists tested inhibited the specific
binding of [3H]-NMS to human M1eM5 receptors in a
concentration-dependent manner. Aclidinium and tiotropium had
comparable affinity for all of the receptor subtypes and higher af-
finity compared with glycopyrronium and ipratropium (Table 1).
The affinity of glycopyrronium was 4- to 13-fold lower than that of
aclidinium across the M1eM5 receptors (Table 1). Ipratropium had
the lowest affinity for all receptor subtypes with the exception of
M2 (Table 1). Glycopyrronium was the only antagonist that
exhibited some degree of preference in terms of affinity for M3
versus M2 receptors (approximately 3-fold; Table 1).
Please cite this article in press as: Gavald�a A, et al., The in vitro and in viv
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3.2. Dissociation from human M2 and M3 muscarinic receptors

The dissociation half-lives of [3H]aclidinium, [3H]glyco-
pyrronium, [3H]tiotropium and [3H]ipratropium were determined
(Table 2). [3H]aclidinium dissociatedmore slowly from bothM2 and
M3 receptors than [3H]glycopyrronium; [3H]tiotropium dissociated
the most slowly from both receptors (approximately 2- to 3-fold
slower than [3H]aclidinium) and [3H]ipratropium dissociated
most rapidly (Fig. 1a and b; Table 2). All the antagonists displayed a
similar magnitude of kinetic selectivity forM3 overM2 receptors (as
determined by the t½ M3/M2 ratio; Table 2).
3.3. Potency and duration of action at endogenous M2 and M3

muscarinic receptors

3.3.1. M2 receptors
To evaluate the potency and duration of action at endogenous

M2 receptors, the ability of muscarinic antagonists to inhibit the
effects of carbachol in electrically stimulated guinea pig left-atria
preparations was assessed. Each of the antagonists reversed
carbachol-mediated inhibition of electrically stimulated contrac-
tions in a concentration-dependent manner. Tiotropium displayed
the greatest potency at endogenous M2 receptors, whereas the
potencies of aclidinium, glycopyrronium and ipratropium were
comparable (Table 3). Glycopyrronium had a t½ offset time
approximately 3-fold shorter than that of aclidinium and 6-fold
shorter than that of tiotropium. By contrast, the t½ offset of glyco-
pyrronium was 8-fold longer than that of ipratropium (Table 3).
3.3.2. M3 receptors
The ability of antagonists to inhibit cholinergic tone in isolated

guinea pig trachea was investigated to determine the potency and
duration of action of each compound at endogenous M3 receptors.
All four antagonists exhibited comparable, low nanomolar, potency
(3.0e5.3 nM) at endogenous M3 receptors (Table 3). The duration of
action of the three LAMAs at M3 receptors was comparable,
whereas the duration of action of the SAMA, ipratropium, was
much shorter (>480 min versus 42 min, respectively; Table 3).
3.4. In vivo onset of action, potency and duration of action in
anaesthetised guinea pigs

All of the antagonists produced concentration-dependent inhi-
bition of acetylcholine-induced bronchoconstriction in vivo;
maximal inhibition was 97e99% with all four antagonists. With
regard to onset of action, aclidinium, glycopyrronium and ipra-
tropium achieved tmax 2 h post-administration compared with 4 h
with tiotropium. At the onset of action for each compound, EC50
values were comparable across all four antagonists, ranging from
1.4 to 3.8 mg/mL (Table 4).
o profile of aclidinium bromide in comparison with glycopyrronium
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Fig. 1. Dissociation of [3H]aclidinium, [3H]glycopyrronium, [3H]tiotropium and [3H]
ipratropium from (a) human M2 receptors, and (b) human M3 receptors.

A. Gavald�a et al. / Pulmonary Pharmacology & Therapeutics xxx (2014) 1e8 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

YPUPT1381_proof ■ 7 June 2014 ■ 5/8
The duration of bronchodilator action was assessed using a
single concentration of each inhaled antagonist (aclidinium 100 mg/
mL, glycopyrronium 100 mg/mL, tiotropium 10 mg/mL and ipra-
tropium 30 mg/mL). At 1 h post-administration, all of the
Table 3
Potency and duration of action of aclidinium, glycopyrronium, tiotropium and
ipratropium at native M2 receptors (isolated guinea pig left atria) and M3 receptors
(isolated guinea pig trachea).

M2 receptors M3 receptors

EC50 (nM)a t1/2 offset (min) EC50 (nM)a t1/2 offset (min)

Aclidinium 17.4 ± 1.1 102 5.3 ± 1.6 >480
Glycopyrronium 17.3 ± 1.2 30 4.2 ± 0.3 >480
Tiotropium 11.8 ± 1.1 184 3.0 ± 0.6 >480
Ipratropium 19.9 ± 1.1 4 3.0 ± 0.4 42

EC50, concentration required to produce 50% inhibition of the maximum carbachol-
induced relaxation (M2) or 50% inhibition of electrically stimulated contractions
(M3); t1/2 offset, time to 50% recovery of themaximum carbachol-induced relaxation
(M2) or to 50% recovery of electrically-stimulated contractions (M3).

a Data reported as mean ± standard error of the mean; n ¼ 3e13.
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antagonists produced equi-effective (97e98%) inhibition of
acetylcholine-induced bronchoconstriction at the selected doses
(Fig. 2). The in vivo duration of bronchodilator action of aclidinium
was more than 2-fold that of glycopyrronium (t½ offset ¼ 29 h
versus 13 h, respectively; Fig. 2). Tiotropium had the longest
duration of action (t½ offset ¼ 64 h) and ipratropium the shortest
(t½ offset ¼ 8 h) (Fig. 2).

3.5. Salivation in conscious rats

The ability of aclidinium, glycopyrronium and tiotropium to
inhibit salivation was assessed in the rat pilocarpine-induced sia-
lorrhea model. All three compounds inhibited sialorrhea in a dose-
dependent manner (Fig. 3). However, the doseeresponse curve for
aclidinium demonstrated a rightward shift compared with that of
tiotropium. Consistent with this, the dose of aclidinium required to
produce a 50% inhibition of pilocarpine-induced salivation (ED50)
was 43e51-fold lower than that for tiotropium and glycopyrronium
(ED50 [mg/kg] ¼ 38, 0.88 and 0.74 for aclidinium, tiotropium and
glycopyrronium respectively; Fig. 3).

3.6. In vitro guinea pig and rat plasma stability

Fig. 4 shows the stability of all four antagonists in rat (Fig. 4a),
guinea pig (Fig. 4b) and human (Fig. 4c) plasma. Plasma stability
data for aclidinium, tiotropium and ipratropium in rat and guinea
pig have been reported previously [22]. In rat plasma, aclidinium
was rapidly hydrolysed with t½ ¼ 0.19 h (Table 5) whereas glyco-
pyrronium was hydrolysed more slowly (t½ ¼ 12 h; Table 5). Tio-
tropium was hydrolysed more slowly than aclidinium, but more
quickly than either glycopyrronium or ipratropium. Aclidiniumwas
more stable in guinea pig plasma compared with rat (Table 5),
whereas glycopyrronium was less stable. Aclidinium was least
stable in human plasma (t½ ¼ 0.04 h), whereas the stability of the
other three antagonists in human plasma was intermediate to that
observed in rat and guinea pig plasma. The rank order of plasma
stability was the same in all three species, with
aclidinium < tiotropium < glycopyrronium < ipratropium (Table 5,
Fig. 4aec).

4. Discussion

The use of a LAMA in the maintenance treatment of stable COPD
is well established [1]. However, until recently, tiotropium was the
only LAMA approved for the treatment of COPD. The recent
approval of aclidinium and glycopyrronium for use as maintenance
bronchodilator treatment in patients with COPD expands the
therapeutic options for these patients. Here, we compared the
in vitro and in vivo profiles of aclidinium and glycopyrronium with
those of tiotropium and the SAMA, ipratropium. Our results
demonstrate that while all four muscarinic receptor antagonists
have high affinity for M1 to M5 receptors and demonstrate similar
kinetic selectivity for M3 versus M2 receptors, they have unique
profiles with respect to dissociation from the therapeutic target (M3
receptors), and in vitro and in vivo onset and duration of action.
Furthermore, their propensity to inhibit salivation in a rodent
model varies, which may be related, in part, to differences in the
plasma stability of each compound.

Aclidinium exhibited sub-nanomolar affinity for all five receptor
subtypes with no selectivity in terms of binding affinity at any of
the receptors. Consistent with previous reports [21,25], glyco-
pyrronium also had high affinity for each of the five receptor sub-
types; however, its affinity was 4- to 13-fold lower than that of
aclidinium across the receptors. Whilst glycopyrronium exhibited
some degree of selectivity for M3 versus M2 receptors
o profile of aclidinium bromide in comparison with glycopyrronium
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Table 4
Onset of action and potency of aclidinium, glycopyrronium, tiotropium and ipratropium in reversing acetylcholine-induced bronchoconstriction in guinea pigs (n ¼ 4e9 by
dose and time point).

Onset time (h) EC50, mg/mL (95% CI)

1 h 2 h 4 h 18 h 24 h

Aclidinium 2 5.9 (3.7, 9.4) 2.5 (1.7, 3.5) 2.9 (1.8, 4.7) 12.4 (4.1, 37.6) 23.1 (9.3, 57.3)
Glycopyrronium 2 7.2 (4.1, 12.8) 3.8 (2.5, 5.7) 8.8 (5.2, 14.8) 68.7 (39.6, 119.2) 242.3 (162.0, 362.2)
Tiotropium 4 2.4 (1.4, 3.8) 3.9 (2.0, 7.6) 1.4 (0.7, 2.5) 1.4 (0.7, 2.9) 3.3 (2.0, 5.2)
Ipratropium 2 6.9 (4.0, 11.7) 3.4 (1.9, 5.9) 7.3 (4.0, 13.4) 689.7 (337.1, 1411.0) NA

CI, confidence interval; Onset time, time to maximal inhibition of bronchoconstriction (h); EC50, concentration required to produce 50% inhibition of bronchoconstriction
induced by acetylcholine (30 mg/kg i.v.); h, hour; i.v., intravenous; NA, not available.
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(approximately 3-fold), binding affinities at each receptor were still
in the low nanomolar range. As previously reported, the affinity of
aclidinium for M1 to M5 receptors was comparable to that of tio-
tropium; ipratropium was the least potent of the four compounds
overall [20,21].

The difference in duration of action of LAMAs and SAMAs is
thought to be primarily due to their longer residence times at hu-
man M3 receptors [21,26]. Aclidinium, glycopyrronium and tio-
tropium have been reported to have a residence half-life at
recombinant human M3 receptors of between 6.1 h and 62.2 h
(compared with 13.2e28.2 min for ipratropium) [20,21,26], making
them suitable for once- or twice-daily dosing in the clinical setting
compared with four times a day for ipratropium. In this study, the
residence half-life of aclidinium at human M3 receptors was
approximately four times longer than that of glycopyrronium.
Tiotropium had the longest residency time, consistent with its use
as a once-daily treatment [27,28]. By contrast, ipratropium had a
dissociation half-life at M3 receptors of <1 h. The longer residency
time of aclidinium versus glycopyrronium at M3 receptors suggests
a longer duration of action in vivo for aclidinium than glyco-
pyrronium. Interestingly, in the clinical setting, aclidinium is
administered twice daily [29,30] versus once daily for glyco-
pyrronium [31e33]. A recent study by Sykes et al., comparing gly-
copyrronium and tiotropium, demonstrated that receptor-binding
properties, including affinity and dissociation rates, can be over-
estimated under non-physiological assay conditions suggesting
that other factors, in particular drug rebinding, may play an
important role in determining duration of action in vivo [34].

Kinetic selectivity for M3 versus M2 receptors is considered
desirable because: (i) inhibition of presynaptic M2 receptors may
facilitate cholinergic signalling in the airway by blocking negative
feedback mechanisms regulating acetylcholine release from para-
sympathetic nerves [7,9]; and (ii) the characteristic tachycardia
seen with anticholinergics is a consequence of inhibition of cardiac
M2 receptors which mediate the negative chronotropic and
Fig. 2. Duration of action of aclidinium, glycopyrronium, tiotropium and ipratropium
in reversing acetylcholine-induced bronchoconstriction in guinea pigs.
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inotropic effects of acetylycholine in the heart [9,35]. All four
muscarinic receptor antagonists have been shown previously to
dissociate faster from M2 receptors compared with M3, conferring
some degree of kinetic selectivity [20,21,26]. In this study, aclidi-
nium and glycopyrronium had comparable kinetic selectivity for
M3 versus M2 receptors, whereas tiotropium exhibited the lowest
kinetic selectivity.

Aclidinium and glycopyrronium had similar relative potencies at
native M3 and M2 receptors, suggesting that the higher affinity of
aclidinium versus glycopyrronium for M3 and M2 receptors in
binding experiments does not necessarily translate into improved
potency at native M3 and M2 receptors. Both antagonists were 3- to
4-foldmore potent at nativeM3 receptors comparedwith nativeM2
receptors, in contrast to the slight preference of glycopyrronium
versus aclidinium for human recombinant M3 compared with M2
receptors. The differences in results between the binding studies
and the in vitro potency studies may be due, in part, to the differ-
ence in receptor affinities between species. Consistent with their
long residency time at recombinant human M3 receptors, aclidi-
nium, glycopyrronium and tiotropium had a long duration of action
(>8 h) in isolated guinea pig trachea.

The faster onset of action of aclidinium and glycopyrronium
compared with tiotropium in this study is consistent with the
clinical profile of these compounds [36,37]. At the time of maximal
effect, aclidinium, glycopyrronium, tiotropium and ipratropium
were equipotent inhibitors of bronchoconstriction in vivo. The
duration of bronchodilator action of each antagonist in vivo
mirrored that for M3 receptors' residency times seen in the binding
Fig. 3. Effects of aclidinium, glycopyrronium and tiotropium on pilocarpine-induced
salivation in conscious male Wistar rats.
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a)

b)

c)

Fig. 4. Stability of aclidinium, glycopyrronium, tiotropium and ipratropium over time
in (a) rat plasma, (b) guinea pig plasma and (c) human plasma.

Table 5
Estimated stability of aclidinium, glycopyrronium, tiotropium and ipratropium in rat
and guinea pig plasma.

Rat plasma
t½ (h)

Guinea pig
plasma t½ (h)

Human
plasma t½ (h)

Aclidinium 0.19 0.64 0.04
Glycopyrronium 11.6 5.5 6
Tiotropium 1.2 1.9 1.6
Ipratropium 23.6 73.4 33

h, hour; t½, hydrolysis half-life.
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studies, with aclidinium having a longer duration of effect in
anaesthetised guinea pigs than glycopyrronium and ipratropium,
and a shorter duration of effect than tiotropium.

Anticholinergic compounds, including tiotropium and ipra-
tropium, are typically associated with systemic side effects such as
dry mouth and tachycardia [12,13,15,16]. In a previous study, acli-
dinium was shown to produce a transient increase in heart rate in
conscious dogs that was resolved 2.5 h post-administration,
whereas tiotropium caused a significant increase that persisted
for at least 6 h post-administration [20]. In this study, aclidinium
was a much less potent inhibitor of salivation than either glyco-
pyrronium or tiotropium, suggesting a lower propensity for acli-
dinium to cause dry mouth in the clinical setting. These preclinical
observations are supported by results from Phase III clinical trials
which have demonstrated that the incidence of dry mouth and
cardiovascular side effects with twice-daily aclidiniumwas low and
comparable to that with placebo [29,30]. Aclidinium was rapidly
hydrolysed in rat and guinea pig plasmawith a t½ in both species 9-
to 61-fold shorter than glycopyrronium and 3- to 6-fold shorter
than tiotropium. Aclidiniumwas least stable in humanplasma, with
a t½ 150-fold shorter than glycopyrronium and 40-fold shorter than
tiotropium. Furthermore, in healthy volunteers aclidinium has been
shown to be rapidly eliminated from plasma [38,39]. The rapid
plasma hydrolysis of aclidinium results in very low systemic
exposure which, coupled to its kinetic selectivity for M3 receptors
over M2, may confer a reduced propensity for systemic side effects
compared with other anticholinergic compounds.

In summary, aclidinium has high affinity for muscarinic re-
ceptors that is comparable to tiotropium but higher than glyco-
pyrronium. While all four muscarinic antagonists have
comparable kinetic selectivity, aclidinium dissociates from M3
receptors more slowly than glycopyrronium and has a longer
bronchodilatory action in vivo. In addition, aclidinium is more
rapidly hydrolysed in plasma compared with both glyco-
pyrronium and tiotropium, which may translate into a reduced
propensity for systemic anticholinergic side effects. The avail-
ability of different LAMAs with unique pharmacological and
physical properties may be important in providing additional
therapeutic options for these patients.
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